

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-13/0441 vom 11. Oktober 2018

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Sormat Einschlaganker LA+ und LAL+

Dübel zur Verwendung im Beton für redundante nichttragende Systeme

Sormat Oy Harjutie 5 21290 RUSKO FINNLAND

Sormat Werk 7

13 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330747-00-0601

ETA-13/0441 vom 14. Juli 2014

Z62292.18

Europäische Technische Bewertung ETA-13/0441

Seite 2 von 13 | 11. Oktober 2018

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

8.06.01-162/18

Europäische Technische Bewertung ETA-13/0441

Seite 3 von 13 | 11. Oktober 2018

Besonderer Teil

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Sormat Einschlaganker LA+ und LAL+ in den Größen M6, M8, M8-25, M10 und M10-25 ist ein Dübel aus galvanisch verzinktem Stahl, der in ein Bohrloch gesetzt und durch wegkontrollierte Verspreizung verankert wird.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Siehe Anhang C2

3.2 Sicherheit bei der Nutzung (BWR 4)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand für alle Lastrichtungen und alle Versagensarten für die vereinfachte Bemessung	Siehe Anhang C1

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330747-00-0601 gilt folgende Rechtsgrundlage: [97/161/EG].

Folgendes System ist anzuwenden: 2+

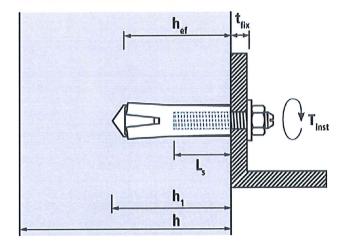
8.06.01-162/18

Europäische Technische Bewertung ETA-13/0441

Seite 4 von 13 | 11. Oktober 2018

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

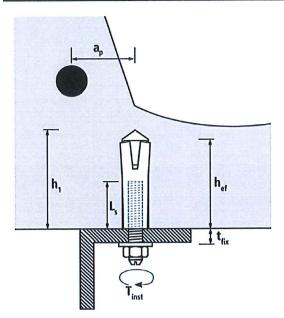
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 11. Oktober 2018 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

LA+ und LAL+ - Einbauzustand im Beton C20/25 - C50/60

h = Bauteildicke

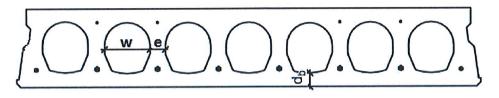

h₁ = Bohrlochtiefe bis zum tiefsten Punkt

h_{ef} = effektive Verankerungstiefe t_{fix} = Dicke des Anbauteils

L_s = Gewindelänge im Anker

T_{inst} = max. Installationsdrehmoment

LA+ und LAL+ – Einbauzustand in vorgespannten Hohlkammerdeckenplatten (w/e ≤ 4,2) mit Spiegeldicke ≥ 35 mm und Betonfestigkeit C45/55 bis C50/60


h₁ = Bohrlochtiefe bis zum tiefsten Punkt

h_{ef} = effektive Verankerungstiefe

t_{fix} = Dicke des Anbauteils L_s = Gewindelänge im Anker

T_{inst} = max. Installationsdrehmoment

a_p = Abstand zwischen Bohrloch und Bewehrung

w = Hohlraumbreite

e = Stegbreite

d_b = Spiegeldicke

Sormat Einschlaganker LA+ und LAL+

Produkt Beschreibung

Einbauzustand

Anhang A1

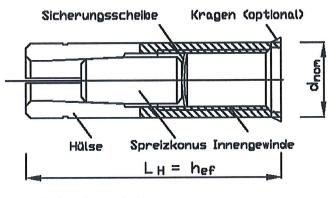
Sormat Einschlaganker LA+ und LAL+

LA+ ohne Kragen

LAL+ mit Kragen

Kennzeichnung:

Herstellerkennung Produktname


Größe

Logo oder Herstellername

LA+ / LAL+ z.B. 10

Beispiel:

LA+ 10 ## LAL+ 10

Anker komplett

Spreizkonus

Tabelle A2: Ankerabmessung

Anker		Hülse		Konus	
	Innengewinde	Länge	Außen-Ø Hülse	Länge ca.	Außen-Ø Konus
Тур		L _H	d _{nom}	L _C	d _C
LA(L)+		[mm]	[mm]	[mm]	[mm]
6	M6	25	8	10	4,5
8 x 25	M8	25	10	8,3	6,3
8	M8	30	10	12	6.0
10 x 25	M10	25	12	8,3	8,0
10	M10	40	12	16	7,5

Sormat Einschlaganker LA+ und LAL+

Produktbeschreibung

Ankerbauteile, Kennzeichnung und Abmessung

Anhang A2

Tabelle A3.1: Benennung und Werkstoffe

Benennung	Werkstoff
Hülse M6 M8 M8-25 M10-25	Kalt umgeformter Stahl C1008-C1012 oder EN 10277:2008
Hülse M10	Kalt umgeformter Stahl C1015 or EN 10277:2008
Spreizkonus	Kalt umgeformter Stahl C1006-C1008
Sicherungsscheibe	Papier oder Plastik

Alle Stahlteile galvanisch verzinkt und blau passiviert ≥ 5 µm gemäß EN ISO 4042:1999

Tabelle A3.2: Festigkeit Hülse

Sormat Einachlas	Größe				
Sormat Einschlag	M6	M8 / M8-25	M10 / M10-25		
Zugfestigkeit	f _{uk}	[N/mm²]	535	535	535
Streckgrenze	f _{yk}	[N/mm²]	485	485	485

Sormat Einschlaganker LA+ und LAL+

Anhang A3

Produktbeschreibung

Werkstoffe

Handsetzwerkzeug

Optional: Handsetzwerkzeug mit Markierung und/oder Gummigriff möglich

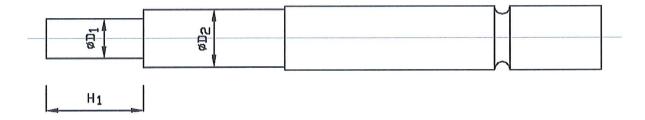


Tabelle A4.1: Abmessung des Setzwerkzeuges

Setzwerkzeug	Einschlagstift							
Stahl HRc 38-42	Abmessung							
Тур	D ₁ D ₂ H ₁							
	[mm]	[mm]	[mm]					
LT+ 6 (PRO)	5	7,5	15					
LT+ 8 (PRO)	6,6	9,5	17,5					
LT+ 10x25 (PRO)	8,3	12	17,0					
LT+ 10 (PRO)	8,3	12	23,5					

Sormat Einschlaganker LA+ und LAL+

Anhang A4

Produktbeschreibung

Setzwerkzeug

Spezifikation des vorgesehenen Anwendungsbereiches

Beanspruchung der Verankerung:

- · Statisch und quasi-statisch Lasten.
- Verwendung ausschließlich als Mehrfachbefestigung von nichttragenden Systemen.
- Verwendung als Verankerung in vorgespannten Hohlkörperdeckenplatten (nur Größen M8-25 u. M10-25).
- · Brandbeanspruchung (gilt nicht für Anwendung in Hohlkörperdeckenplatten).

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013,
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206:2013,
- · Ungerissener und gerissener Beton.

Anwendungsbedingungen (Umweltbedingungen):

Bauteile unter den Bedingungen trockener Innenräume.

Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs,
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern, usw.),
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit FprEN 1992-4:2017 und EOTA Technical Report TR 055, Bemessungsverfahren B.

Einbau:

- · Einbau der Verankerung durch entsprechend geschultes Personal und unter der Aufsicht des Bauleiters,
- · Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung,
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.

Sormat Einschlaganker LA+ und LAL+

Verwendungszweck

Spezifikation des vorgesehenen Anwendungsbereiches

Anhang B1

Tabelle B2.1: Montagekennwerte

Befestigungsschraube oder Gewindestange:

Es können die Festigkeitsklassen 4.6, 5.6, 5.8 oder 8.8 gemäß EN ISO 898-1 verwendet werden.

Mindesteinschraubtiefe:

Die Länge der Befestigungsschraube ist in Abhängigkeit der Dicke des Anbauteiles t_{fix} , zulässiger Toleranzen und nutzbarer Gewindelänge $L_{\text{s,min}}$ sowie der Mindesteinschraubtiefe $L_{\text{s,min}}$ festzulegen.

Correct Finachlagankay I A	Größe						
Sormat Einschlaganker LA	M6	M8-25	M8	M10-25	M10		
Bohrernenndurchmesser	d _o	[mm]	8	10	10	12	12
Schneidendurchmesser Bohrer	d _{cut} ≤	[mm]	8,45	10,45	10,45	12,50	12,50
Innerer Gewindedurchmesser	М	[mm]	6	8	8	10	10
Bohrlochtiefe am tiefsten Punkt	h₁≥	[mm]	27	27	32	27	43
Abstand zw. Anker u. Bewehrung 1)	a _p ≥	[mm]	-	50	-	50	
Effektive Verankerungstiefe	h _{ef}	[mm]	25	25	30	25	40
Maximale Einschraubtiefe	L _{s,max}	[mm]	11	12	13	12	16
Minimale Einschraubtiefe	L _{s,min}	[mm]	6	8	8	10	10
Durchgangsloch-Ø im anzuschließenden Anbauteil	d _f ≤	[mm]	7	9	9	12	12
Maximales Setz-Drehmoment	max T _{inst}	[Nm]	4	8	8	15	15

¹⁾ Gilt nur für Hohlkörperdeckenplatten

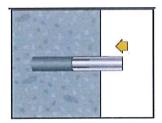
Tabelle B2.2: Mindestbauteildicke und min. Achs- und Randabstand

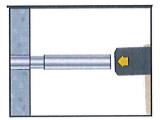
Cormet Finachlagenker At und Al t				Größe					
Sormat Einschlaganker LA+ und LAL+			M6	M8-25	M8	M10-25	M10		
Mindestbauteildicke	h _{min}	[mm]	100	100	100	100	100		
Minimaler Achsabstand	S _{min}	[mm]	70	120	105	130	105		
Minimaler Randabstand	C _{min}	[mm]	105	110	105	140	140		

<u>Tabelle B2.3: Mindestbauteildicke und min. Achs- und Randabstand bei vorgespannten</u> Hohlkörperdeckenplatten.

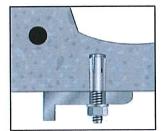
Cormet Finachlegenker I	A+ und I A	Größe			
Sormat Einschlaganker L	AT UNU LA	M8-25	M10-25		
Mindestbauteildicke	h _{min}	[mm]	200	200	
Minimaler Achsabstand	S _{min}	[mm]	180	180	
Minimaler Randabstand	C _{min}	[mm]	150	150	

Sormat Einschlaganker LA+ und LAL+	4.1
Verwendungszweck Montagekennwerte	Anhang B2


Montageanleitung:


1. Bohrloch erstellen mit Hammerbohren.

2. Bohrloch vom Bohrmehl reinigen (ausblasen).


3. Anker von Hand bzw. durch Hammerschläge ins Bohrloch einbringen. Anker sollte bündig mit der Betonaußenkante sitzen.

4. Mit dem Setzwerkzeug den Anker spreizen. Der Anker ist richtig verspreizt, wenn das Setzwerkzeug am Anker aufliegt.

5. Bauteil befestigen, dabei das maximale T_{inst} nicht überschreiten.

5. Eingebauter LA+/LAL+ in vorgespannter Hohlkörperdeckenplatte.

Sormat Einschlaganker LA+ und LAL+

Verwendungszweck Montageanleitung **Anhang B3**

Tabelle C1.1: Bemessungsverfahren B - Charakteristische Tragfähigkeit

Sormat Einschlaganke	Größe							
Alle Lastrichtungen				M6	M8-25	M8	M10-25	M10
Charakteristische Tragfähigkeit in Beton C20/25 bis C50/60	F ⁰ _{Rk}	[kN]	≥ Stahl 4.6	1,5	2,5	3,0	2,5	7,5
Montagesicherheitsbeiwert	γ_{inst}	[-]		1,4	1,2	1,2	1,2	1,2
Charakteristischer Achsabstand	S _{cr}	[mm]		80	220	120	220	240
Charakteristischer Randabstand	C _{cr}	[mm]		40	110	60	110	120
Stahlversagen mit Hebelarm								
Charakteristische Tragfähigkeit Biegemoment	M ⁰ _{Rk,s}	[Nm]	Stahl 4.6	6,1	15,0	15,0	29,9	29,9
Charakteristische Tragfähigkeit Biegemoment	M ⁰ _{Rk,s}	[Nm]	Stahl 5.6	7,6	18,7	18,7	37,4	37,4
Charakteristische Tragfähigkeit Biegemoment	M ⁰ _{Rk,s}	[Nm]	Stahl 5.8	7,6	18,7	18,7	37,4	37,4
Charakteristische Tragfähigkeit Biegemoment	M ⁰ _{Rk,s}	[Nm]	Stahl 8.8	12,2	30,0	30,0	59,8	59,8

Tabelle C1.2: Charakteristische Tragfähigkeit in vorgespannten Hohlkörperdeckenplatten mit Spiegeldicke ≥ 35 mm

Sormat Einschlaganker				
Vorgespannte Hohlkörperdeckenp	G	röße		
Alle Lastrichtungen	M8-25	M10-25		
Charakteristische Tragfähigkeit	F _{Rk}	[kN]	3,0	4,0
Montagesicherheitsbeiwert	γinst	[-]	1,2	1,2
Charakteristischer Achsabstand	s _{cr} = s _{min}	[mm]	180	180
Charakteristischer Randabstand	c _{cr} = c _{min}	[mm]	150	150

Sormat Einschlaganker LA+ und LAL+	
Leistungsmerkmal Charakteristische Tragfähigkeit	Anhang C1

<u>Tabelle C2: Charakteristische Tragfähigkeit bei Brandbeanspruchung für alle</u> <u>Lastrichtungen in C20/25 bis C50/60 (gilt nicht für Hohlkörperdeckenplatten)</u>

Sormat Einschlaganker LA+ und LAL+					Größe		
Feuerwiderstands- klasse					M6	M8	M10
R30	Charakteristische Widerstände	$F_{Rk,fi}$	[kN]	≥Stahl 4.6	0,2	0,3	0,6
R60	Charakteristische Widerstände	$F_{Rk,fi}$	[kN]	≥Stahl 4.6	0,2	0,3	0,5
R90	Charakteristische Widerstände	F _{Rk,fi}	[kN]	≥Stahl 4.6	0,2	0,2	0,4
R120	Charakteristische Widerstände	F _{Rk,fi}	[kN]	≥Stahl 4.6	0,1	0,2	0,3
Achsabstand und Randabstand unter Brandbeanspruchung							
Achsabstand für R30 – R120		S _{cr,fi}	[mm]		100	120	160
Randabstand für R30 – R120		C _{cr,fi}	[mm]		50	60	80

Der Randabstand muss ≥ 300 mm betragen, wenn die Brandbeanspruchung von mehr als einer Seite erfolgt.

Sormat Einschlaganker LA+ und LAL+

Anhang C2

Leistungsmerkmal

Charakteristische Tragfähigkeit unter Brandbeanspruchung