

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0365 of 12 August 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

Injection system EJOT MULTIFIX SE1000 SEISMIC / Sormat ITH-EPOXe+

Systems for post-installed rebar connections with mortar

EJOT SE & Co. KG MU Construction In der Stockwiese 35 57334 Bad Laasphe DEUTSCHLAND

EJOT Herstellwerk 24

24 pages including 3 annexes which form an integral part of this assessment

EAD 330087-01-0601, Edition 06/2021

European Technical Assessment ETA-22/0365 English translation prepared by DIBt

Page 2 of 24 | 12 August 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-22/0365 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Injection system EJOT MULTIFIX SE 1000 SEISMIC / Sormat ITH-EPOXe+ for rebar connection" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 40 mm or the tension anchor ZA of sizes M12 to M24 according to Annex A and injection mortar MULTIFIX SE 1000 SEISMIC / Sormat ITH-EPOXe+ are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1
Characteristic resistance under seismic loading	See Annex B 4 and C 2

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3 to C 4

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-01-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-22/0365 English translation prepared by DIBt

Page 4 of 24 | 12 August 2022

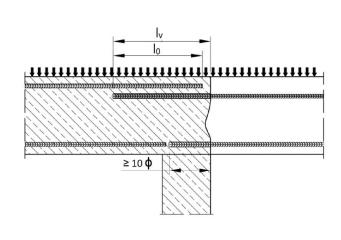
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 12 August 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Page 5 of European Technical Assessment ETA-22/0365 of 12 August 2022


English translation prepared by DIBt

Installation post installed rebar

Figure A1: Overlapping joint for rebar connections of slabs and beams

Figure A2: Overlapping joint at a foundation of a wall or column where the rebars are stressed in tension

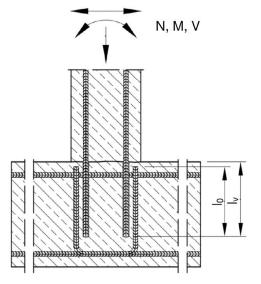


Figure A3: End anchoring of slabs or beams (e.g. designed as simply supported)

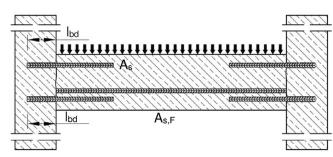
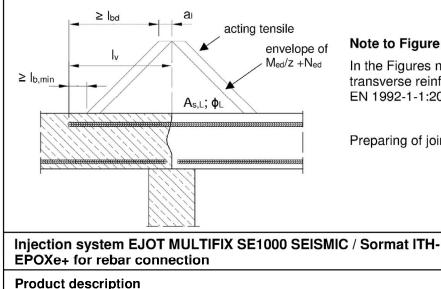
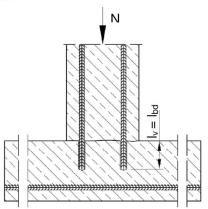




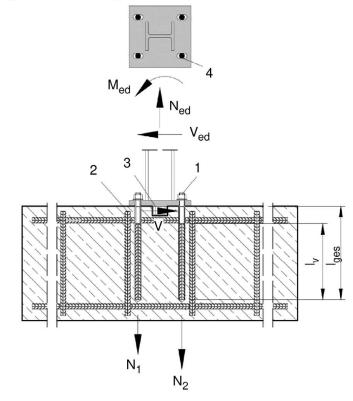
Figure A5: Anchoring of reinforcement to cover the line of acting tensile force

Installed condition and examples of use for rebars

Figure A4: Rebar connection for components stressed primarily in compression. The rebars are stressed in compression

Note to Figure A1 to A5:

In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2004+AC:2010.


Preparing of joints according to Annex B 2

Annex A 1

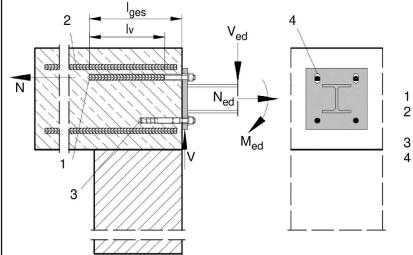

Installation tension anchor ZA

Figure A6: Anchorage of column to foundation with tension anchor ZA.

- 1 Tension anchor ZA (tension only)
- 2 Existing stirrup / reinforcement for overlap (lap splice)
- 3 Shear lug (or fastener loaded in shear)
- 4 Slotted hole with axial direction to the shear force

Figure A7: Anchorage of guardrail posts or cantilevered building components with tension anchor ZA and fastner.

- Tension anchor ZA (tension only)
- Existing stirrup / reinforcement for overlap (lap splice)
- Fastener (or shear lug loaded in shear)
- Slotted hole with axial direction to the shear force

Note to Figure A6 and A7: In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2004+AC:2010. The tension anchor may be only used for axial tensile force. The tensile force must be transferred by lab to the existing reinforcement of the building. The transfer of the shear force has to be ensured by suitable measures, e.g. by means of shear lugs or anchors with European Technical Assessment (ETA). Generals construction rules see Annex B 3

Injection system EJOT MULTIFIX SE1000 SEISMIC / Sormat ITH-EPOXe+ for rebar connection

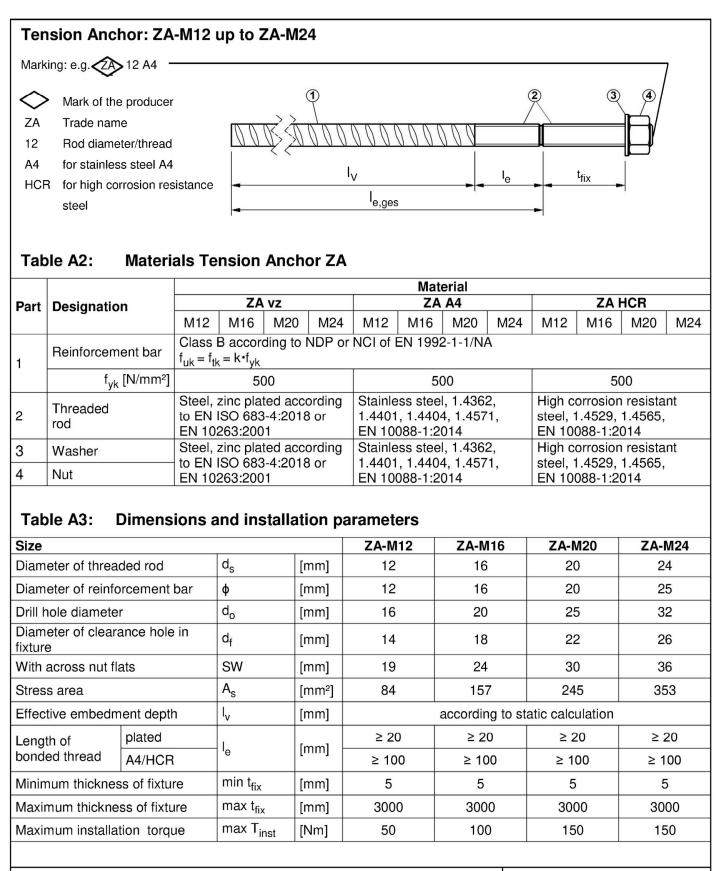
Product description

Installed condition and examples of use for tension anchors ZA

Annex A 2

Page 7 of European Technical Assessment ETA-22/0365 of 12 August 2022

English translation prepared by DIBt



Cartridge system	
Side-by-Side Cartridge: 440 ml, 585 ml and 1400 ml Processing and safety instru- number, manufacturer's info	
Static mixer PM-19E	
	Ø
Piston plug VS and mixer extension VL	
)
Injection system EJOT MULTIFIX SE1000 SEISMIC / Sormat ITH- EPOXe+ for rebar connection	
Product description Injection system	Annex A 3

Reinforcing bar (rebar): ø8 up to ø40		
 Minimum value of related rip area f_{R,min} according to the bar shall be in the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nominal diameter of the bar; h_{rib}: Rib heighting the range 0,05 (\$\u03c6\$: Nomina	5φ ≤ h _{rib} ≤ 0,07φ	
Table A1: Materials Rebar Designation	Material	
Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class f_{yk} and k according to NDP o $f_{uk} = f_{tk} = k \cdot f_{yk}$	
Injection system EJOT MULTIFIX SE1000 S EPOXe+ for rebar connection	EISMIC / Sormat ITH-	
Product description Specifications Rebar		Annex A 4

Injection system EJOT MULTIFIX SE1000 SEISMIC / Sormat ITH-EPOXe+ for rebar connection

Product description Specifications Tension Anchor ZA Annex A 5

Specification of the intended use							
Anchorages subject to:		Working life 50 years	Working life 100 years				
HD: Hammer drilling HDB: Hammer drilling with	static and quasi-static loads	Ø8 to Ø40 ZA-M12 to ZA-M24	Ø8 to Ø40 ZA-M12 to ZA-M24				
hollow drill bit	seismic action	Ø10 to Ø40	Ø10 to Ø40				
CD: Compressed air drilling DD: Diamond drilling	fire exposure	Ø8 to Ø40 ZA-M12 to ZA-M24	Ø8 to Ø40 ZA-M12 to ZA-M24				
Temperature Range:	(max long-term terr	- 40°C to +80°C perature +50 °C and max short-	term temperature +80 °C)				

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013 + A1:2016.
- Concrete strength classes C12/15 to C50/60 according to EN 206:2013 + A1:2016.
- Maximum chloride content of 0,40% (CL 0.40) related to the cement content according to EN 206:2013 + A1:2016.
- Non-carbonated concrete.

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010. The foregoing may be neglected if building components are new and not carbonated and if

building components are in dry conditions.

Use conditions (Environmental conditions) with tension anchor ZA:

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC:2010, EN 1992-1-2:2004+AC:2008 and Annex B 2 and B 3.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

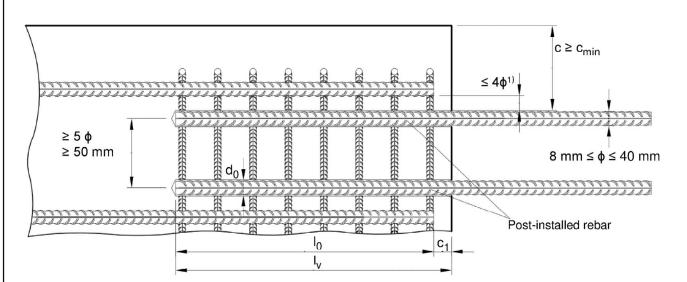
Installation:

- Dry or wet concrete. It must not be installed in flooded holes.
- Overhead installation allowed.
- Hole drilling by hammer drill (HD), hollow drill (HDB), diamond drill (DD) or compressed air drill mode (CD).
- The installation of post-installed rebar resp. tension anchors shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

Injection system	EJOT MULTIFI	X SE1000 SE	ISMIC / Sormat	ITH-
EPOXe+ for reba	r connection			

Intended use

Annex B 1


Specifications

Z75818.22

Figure B1: General construction rules for post-installed rebars

- Only tension forces in the axis of the rebar may be transmitted.
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

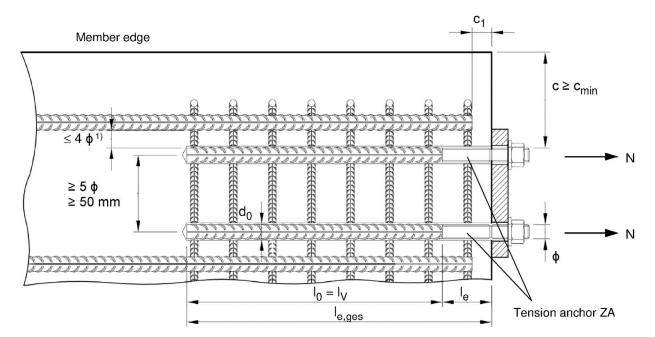
 If the clear distance between lapped bars exceeds 4φ, then the lap length shall be increased by the difference between the clear bar distance and 4φ.

The following applies to Figure B1:

- c concrete cover of post-installed rebar
- c1 concrete cover at end-face of existing rebar
- c_{min} minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
- diameter of post-installed rebar
- Iap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
- I_v effective embedment depth, $\ge I_0 + c_1$
- d₀ nominal drill bit diameter, see Annex B 5

Injection system EJOT MULTIFIX SE1000 SEISMIC / Sormat ITH-EPOXe+ for rebar connection

Intended use


General construction rules for post-installed rebars

Annex B 2

Figure B2: General construction rules for tension anchors ZA

- The length of the bonded-in thread may be not be accounted as anchorage.
- Only tension forces in the direction of the bar axis may be transmitted by the tension anchor ZA.
- The tension force must be transferred via an overlap joint to the reinforcement in the building part.
- The transfer of shear forces shall be ensured by appropriate additional measures, e.g shear lugs or by anchors with an European technical assessment.
- In the anchor plate, the holes for the tension anchors shall be executed as elongated holes with axis in the direction of the shear force.

 If the clear distance between lapped bars exceeds 4φ, then the lap length shall be increased by the difference between the clear bar distance and 4φ.

The following applies to Figure B2:

- c concrete cover of tension anchor ZA
- c1 concrete cover at end-face of existing rebar
- c_{min} minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
- φ diameter of tension anchor
- Iap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
- I_v effective embedment depth
- Iength of bonded thread
- $I_{e,ges}$ overall embedment depth, $\ge I_0 + c_2$
- d_0^{\sim} nominal drill bit diameter, see Annex B 5

Injection system EJOT MULTIFIX SE1000 SEISMIC / Sormat ITH-EPOXe+ for rebar connection

Intended use

General construction rules for tension anchors ZA

Annex B 3

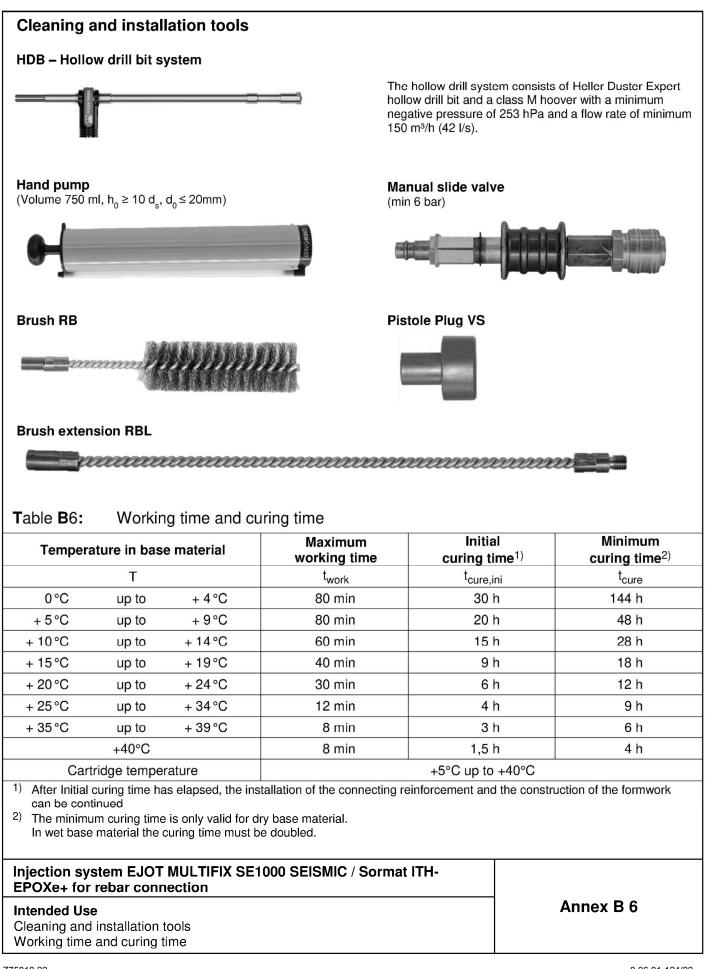
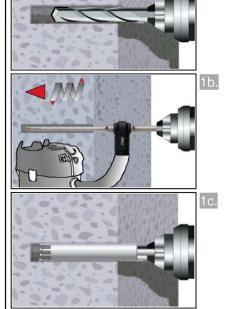

		ete cover c _{min} 1) of illing method	po	st-installed reb	ar an	id tie rod ZA		
Drilling method	Rebar diameter	Without drilling ai	d	W	/ith dı	rilling aid		
HD: Hammer drilling HDB: Hammer drilling	< 25 mm	30 mm + 0,06 · l _v ≥ 2	2ф	30 mm + 0,02 · l _v 2	≥ 2 ¢			
with hollow drill bit	≥ 25 mm	40 mm + 0,06 · $l_v \ge 2$	2φ	40 mm + 0,02 · l _v 2	≥ 2 φ	Drilling aid		
DD: Diamond drilling	< 25 mm	Drill rig used as drilli	drilling 30 mm + 0,02 \cdot l _v \ge 2 ϕ					
DD. Diamona aming	≥ 25 mm	aid		40 mm + 0,02 \cdot l _v 2	≥ 2 φ			
CD: Compressed air	< 25 mm	50 mm + 0,08 · l _v		50 mm + 0,02 \cdot l _v	50 mm + 0,02 · I _v			
drilling	≥ 25 mm	60 mm + 0,08 · l _v ≥ 2	2φ	60 mm + 0,02 · l _v 2	≥ 2 ¢			
 see Annex B 2, Figure B1 and Comments: The minimum con For the minimum concrete cov Table B2: Minimum 	crete cover acc ver cmin,seis in	EN 1992-1-1:2004+AC:20 case of a seismic action, se	e Tab					
Drilling method		esign conditions)istance to 1st edg	je	Distance to 2nd edge		
HD: Hammer drilling HDB: Hammer drilling with		Edge		≥2¢		≥ 2 ¢		
hollow drill bit CD: Compressed air drilli	ng	Corner		≥ 2 φ		≥ 2 ¢		
DD: Diamond drilling		Edge		≥ 4 ¢		≥ 8 ¢		
DD. Diamond dining		Corner		≥6φ		≥ 6 ¢		
Table B3: Disper	nsing tool	S						
Cartridge type/size		Hand tool				Pneumatic tool		
Side-by-side cartridges 440, 585 ml	e.g. SA	296C585 e	.g. T	уре Н 244 С		e.g. Type TS 444 KX		
Side-by-side cartridges 1400 ml		-	-			e.g. Type TS 471		
All cartridges could also be extru Injection system EJOT			orm	at ITH-				
Intended use Minimum concrete cover Dispensing tools		521000 SEISIMIC / S		a		Annex B 4		

Table B4:Brushes, piston plugs, max anchorage depth and mixer extension, hammer (HD), diamond (DD) and compressed air (CD) drilling																			
_	L .		Drill				d _{b,min}		Ca	rtridge	e: 440	ml or	585 ml	Cartrie	dge: 1400 m				
Bar size	Tension anchor	I	bit - 🤉			d _b sh - Ø	min. Brush -	Piston plug				land or ttery tool				Pneu	matic too	tool Pneumatic too	
φ	ф	HD	DD	CD			Ø		I _{v,max}	Mix exten		I _{v,max}	Mixer extensior	I _{v,max}	Mixer extension				
[mm]	[mm]		[m	m]		[mm]	[mm]		[mm]			[mm]		[mm]					
8	-	1	0		RB1	0 11,5	10,5	-1	250			250		250					
•	-				RB12	2 13,5	12,5	- 1	700			800		800	VL10/0,75				
10	-	1	2	-					250			250		250	or VL16/1,8				
	-		4		RB14	4 15,5	14,5	VS14	700 250			1000		1000 250	VL10/1,0				
12	ZA-M12	1	4 16	-	RB16	6 17,5	16,5	VS16	250			250		1200					
14	-		18		RB18		18,5	VS18	700	VL10/	0 75	1300		1400					
16	ZA-M16		20		RB20		20,5	VS20	,			1000		1600					
		2	25		RB2		25,5	VS25		VL16			VL10/0,7	5					
20	ZA-M20		-	26	RB2		26,5	VS25			ć		or						
22	Ξ		28		RB28		28,5	VS28					VL16/1,8						
04/05	74 1404		30		RB30	0 32,0	30,5	VS30	500						VL16/1,8				
24/25	ZA-M24		32		RB32	2 34,0	32,5	VS32				1000		0000	of the underland the most offer				
28	-		35		RB3	5 37,0	35,5	VS35				1000		2000					
32/34	-		40		RB40	0 43,5	40,5	VS40											
36	-		45		RB4	5 47,0	45,5	VS45											
40	-	- 1	52	52	RB52		52,5	VS52	-	-									
	-	55	-	55	RB5	5 58,0	55,5	VS55											
Bar	Tension	d Dr	rillin ill	ıg w	ith h	ollow d _{b,min}	drill bit	syster	n (HC Cartrid)B) ge: 440	0 ml c	or 585	ml	Cartrid	hammer ge: 1400 ml				
size	anchor	bit		d Brug	·	min. Brush -	Piston plug	Hand o	r batte	battery tool Pneumation		ic tool	Pneu	matic tool					
φ	φ	HD		brusi	n-@	Ø	piug	I _{v,max}		xer nsion	l _{v,ma}	ex ex	Mixer	I _{v,max}	Mixer extension				
[mm]		[m	m]					[mm]			[mn			[mm]					
8	-	1					-	250			250			250					
0	-	13	2					700			800)		800					
10	-		2					250			250)	Ļ	250					
10	-	14	4				VS14	700	4		100		Ļ	1000					
12	ZA-M12							250	4		250)	ļ	250					
		1(No	o clea	nina	VS16			0/0,75		VI	10/0,75		VL10/0,75				
14	-	10			Requi		VS18	700		or Or		.	or		or				
16	ZA-M16	20			•		VS20			6/1,8		V	L16/1,8		VL16/1,8				
20	ZA-M20	2					VS25				100			1000					
22		2					VS28				100	0		1000					
24/25	ZA-M24	3					VS30 VS32	500											
28		3					VS32												
32/34 40 VS40 Injection system EJOT MULTIFIX SE1000 SEISMIC / Sormat ITH- EPOXe+ for rebar connection											l								
Injec						X SET			ormat										

Page 15 of European Technical Assessment ETA-22/0365 of 12 August 2022


Installation instructions

Attention: Before drilling, remove carbonated concrete and clean contact areas (see Annex B1) In case of aborted drill hole: the drill hole shall be filled with mortar.

Drilling of the bore hole

1a. Hammer drilling (HD) / Compressed air drilling (CD) Drill a hole to the required embedment depth.

Drill a noie to the required embedment depth. Drill bit diameter according to Table B4. Proceed with Step 2 (MAC or CAC).

Hollow drill bit system (HDB) (see Annex B 6) Drill a hole to the required embedment depth. Drill bit diameter according to B5. The hollow drilling system removes the dust and cleans the bore hole. Proceed with Step 3.

Diamond drilling (DD)

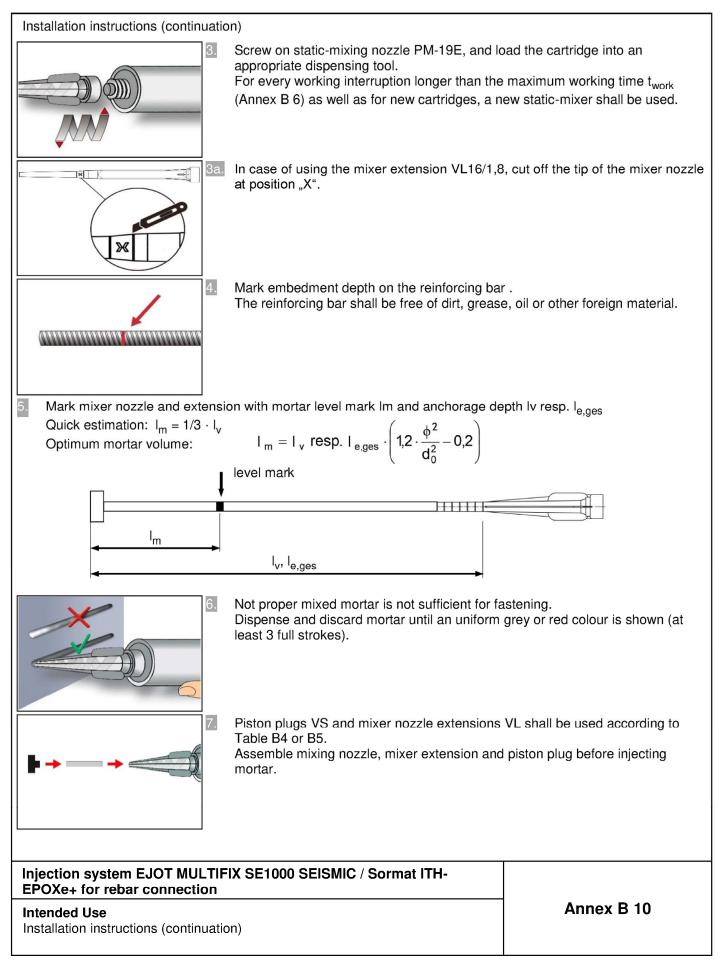
Drill a hole to the required embedment depth required Drill bit diameter according to Table B4. Proceed with Step 2 (SPCAC).

Injection system EJOT MULTIFIX SE1000 SEISMIC / Sormat ITH-EPOXe+ for rebar connection

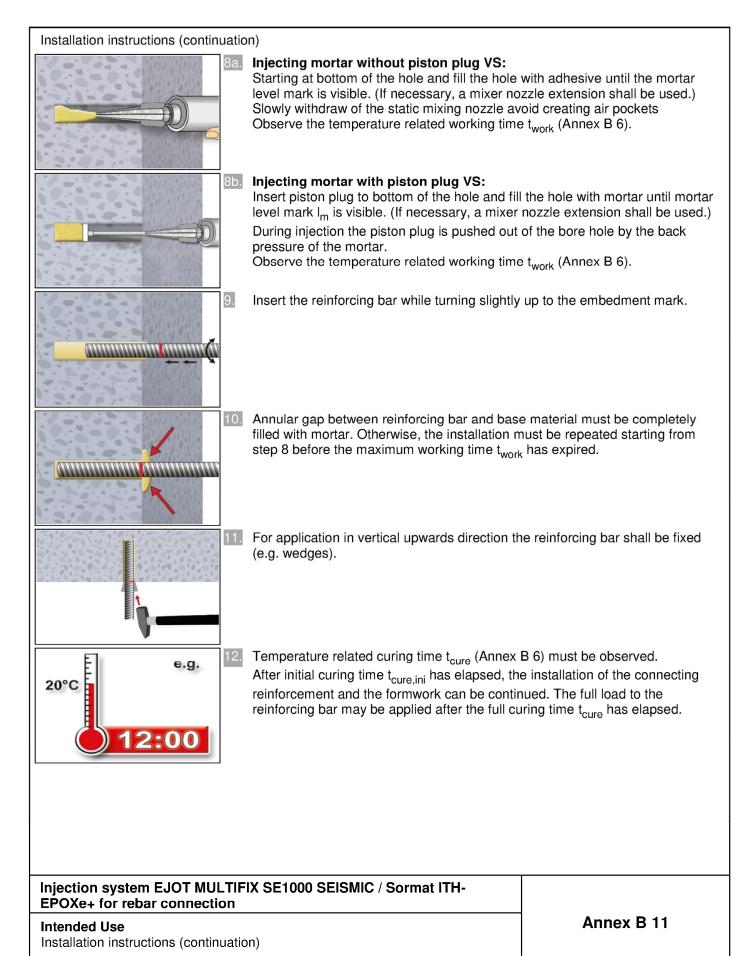
Intended use

Installation instruction

Annex B 7



Installation instructions (continuation)	Installation instructions (continuation)						
Manual Air Cleaning (MAC) for drill hole diameter $d_0 \le 20$ mm and drill hole depth $h_0 \le 10\phi$ with drilling method HD/CD							
Attention! Standing water in the bore hole must a. Blow the bore hole clean minimum 4x from the (Annex B 6).	t be removed before cleaning.						
2b. Brush the bore hole minimum 4x with brush R entire embedment depth in a twisting motion (extension RBL).	0						
Finally blow the bore hole clean minimum 4x f pump (Annex B 6).	from the bottom or back by hand						
Compressed Air Cleaning (CAC): All diameter with drilling method HD/CD							
Attention! Standing water in the bore hole must a. Blow the bore hole clean minimum 2x with con (Annex B 6) over the entire embedment depth noticeable dust. (If necessary, an extension sh	mpressed air (min. 6 bar) n until return air stream is free of						
2b. Brush the bore hole minimum 2x with brush R entire embedment depth in a twisting motion. RBL shall be used.)							
Finally blow the bore hole clean minimum 2x w (Annex B 6) over the entire embedment depth noticeable dust. (If necessary, an extension sh	n until return air stream is free of hall be used.)						
Protect cleaned bore hole against re-contamination in an appropriate way. If necessary, repeat cleaning process directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.							
Injection system EJOT MULTIFIX SE1000 SEISMIC / Sormat ITH- EPOXe+ for rebar connection							
Intended use Installation instructions (continuation)	Annex B 8						



Installation instructions (continuation)							
Flush & Compressed Air Cleaning (SPC All diameter with drilling method DD	CAC):						
	shing with water until clear water comes ou	ut.					
	ush the bore hole minimum 2x with brush R ire embedment depth in a twisting motion. L shall be used.)						
2c. Flu	shing again with water until clear water cor	nes out.					
(Ar	w the bore hole clean minimum 2x with con nnex B 6) over the entire embedment depth iceable dust. (If necessary, an extension sh	until return air stream is free of					
	ush the bore hole minimum 2x with brush R ire embedment depth in a twisting motion. L shall be used.)						
(Ar	ally blow the bore hole clean minimum 2x v nnex B 6) over the entire embedment depth iceable dust. (If necessary, an extension sl	until return air stream is free of					
Protect cleaned bore hole against re-contamination in an appropriate way. If necessary, repeat cleaning process directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.							
Injection system EJOT MULTIFIX S EPOXe+ for rebar connection	E1000 SEISMIC / Sormat ITH-						
Installation instructions (continuation)		Annex B 9					

	A HCR) tance gth and m ength I _{b,mi} Eq. 8.7 an fable C2.	_{in} and the i id l _{0,min} ac	minimum I	ap length	1,4 tic or qua	125	196 ,4 171 1,3		282
Characteristic tension resis Partial factor Stainless Steel (ZA A4 or Z Characteristic tension resis Partial factor Minimum anchorage leng The minimum anchorage leng	A HCR) tance gth and m ength I _{b,mi} Eq. 8.7 an fable C2.	$\frac{\gamma_{MS,N}}{N_{Rk,S}}$ $\frac{\gamma_{MS,N}}{ninimum la}$ in and the model I _{0,min} ac	[-] [kN] [-] ap length	67 under sta	1,4 tic or qua	125	,4		247
Stainless Steel (ZA A4 or Z Characteristic tension resis Partial factor Minimum anchorage leng The minimum anchorage leng $I_{b,min}$ acc. to Eq. 8.6 and leng $\alpha_{lb} = \alpha_{lb,100y}$ according to T Fable C2: Amplifi	A HCR) tance gth and m ength I _{b,mi} Eq. 8.7 an fable C2.	$\frac{\gamma_{MS,N}}{N_{Rk,S}}$ $\frac{\gamma_{MS,N}}{ninimum la}$ in and the model I _{0,min} ac	[-] [kN] [-] ap length	67 under sta	1,4 tic or qua	125	171		247
Stainless Steel (ZA A4 or Z Characteristic tension resis Partial factor Minimum anchorage leng The minimum anchorage leng $I_{b,min}$ acc. to Eq. 8.6 and leng $\alpha_{lb} = \alpha_{lb,100y}$ according to T Fable C2: Amplifi	tance gth and m ength I _{b,mi} Eq. 8.7 an able C2.	$N_{Rk,s}$ $\gamma_{Ms,N}$ hinimum lating and the mid l _{0,min} ac	[kN] [-] ap length	under sta ap length	1,4 itic or qua	125	171		an an an
Characteristic tension resis Partial factor Minimum anchorage leng The minimum anchorage leng $I_{b,min}$ acc. to Eq. 8.6 and I $\alpha_{lb} = \alpha_{lb,100y}$ according to T Fable C2: Amplifi	tance gth and m ength I _{b,mi} Eq. 8.7 an able C2.	γ _{Ms,N} hinimum la _{in} and the m id l _{0,min} ac	[-] ap length minimum l	under sta ap length	1,4 itic or qua				and the second second
Partial factor Minimum anchorage lenge The minimum anchorage lenge $I_{b,min}$ acc. to Eq. 8.6 and length $\alpha_{lb} = \alpha_{lb,100y}$ according to T Fable C2: Amplifi	gth and m ength I _{b,mi} Eq. 8.7 an able C2.	γ _{Ms,N} hinimum la _{in} and the m id l _{0,min} ac	[-] ap length minimum l	under sta ap length	1,4 itic or qua				
Minimum anchorage lenge The minimum anchorage lenge $I_{b,min}$ acc. to Eq. 8.6 and 1 $\alpha_{lb} = \alpha_{lb,100y}$ according to T Fable C2: Amplifi	ength I _{b,mi} Eq. 8.7 an able C2.	inimum la _{in} and the i	ap length minimum l	ap length	tic or qua	si-static	1,0	1	1,4
$I_{b,min}$ acc. to Eq. 8.6 and $I_{alb} = \alpha_{lb,100y}$ according to T Table C2: Amplifi	Eq. 8.7 an able C2.	id I _{0,min} ac					oading	I	-,,-
Table C2: Amplifi	cation f	actor a							2:2010
	lling me				d to con nd 100 y				
Concrete strength clas	s	Drilling I	method		Bar s	ize		$\alpha_{\text{lb}} = \alpha_{\text{lb},1}$	
C12/15 to C50/60		all drilling	methods		8 mm to 4 A-M12 to		10		
Rebar φ	C12/15	C16/20	C20/25	Concre C25/30	te strengt C30/37	h class C35/45	C40/50	C45/55	C50/6
Rebar	g me oo	and 100	ycuro	Concre	te strengt	h class			
		C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 40 mm ZA-M12 to ZA-M24					1,0				
drilling working f _{bd,PIR} = I ^f bd,PIR,100 with f _{bd} : Desig the rebar multiply th	method g life 50 $K_b \cdot f_{bd}$ $y_y = K_{b,100}$ gn value o diameter, ne values $\cdot 1 - 1 : 2004$	Is and fo and 100 y ^{· f} bd f the ultima the drilling	or good) years ate bond s g method t 7) and reco	conditic tress in N/ for good b ommended	mm² cons ond condit d partial fa	idering the	e concrete other bon	strength c d condition	lasses,
Rebar				Conc	rete stren	gth class			
φ	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 32 mm ZA-M12 to ZA-M24	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3
34 mm	1,6	2,0	2,3	2,6	2,9	3,3	3,6	3,9	4,2
36 mm	1,5	1,9	2,2	2,6	2,9	3,3	3,6	3,8	4,1
40 mm	1,5	1,8	2,1	2,5	2,8	3,1	3,4	3,7	4,0
njection system EJOT EPOXe+ for rebar conne		K SE1000	SEISMIC	/ Sorma	ITH-			nex C 1	

Minimum anchorage length and minimum lap length under seismic action

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{0,min}$ according to EN 1992-1-1:2004+AC:2010 ($I_{b,min}$ acc. to Eq. 8.6 and Eq. 8.7 and $I_{0,min}$ acc. to Eq. 8.11) shall be multiply by the amplification factor $\alpha_{lb,seis} = \alpha_{lb,seis,100y}$ according to Table C5.

Table C5:Amplification factor $\alpha_{lb,seis} = \alpha_{lb,seis,100y}$ related to concrete strength class
and drilling method; working life 50 and 100 years

Concrete strength class	Drilling method	Bar size	Amplification factor $\alpha_{lb,seis} = \alpha_{lb,seis,100y}$
C16/20 to C50/60	all drilling methods	10 mm to 40 mm	1,0

Table C6:Reduction factor $k_{b,seis} = k_{b,seis,100y}$ for all drilling methods;
working life 50 and 100 years

Rebar	Concrete strength classes								
φ	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
10 to 40 mm	No performance assessed				1	,0			

Table C7:Design values of the ultimate bond stress $f_{bd,PIR,seis}$ and $f_{bd,PIR,seis,100y}$ in N/mm²for all drilling methods and for good conditions;working life 50 and 100 years

with

 f_{bd} : Design value of the ultimate bond stress in N/mm² considering the concrete strength classes, the rebar diameter, the drilling method for good bond condition (for all other bond conditions multiply the values by $\eta 1 = 0.7$) and recommended partial factor $\gamma_c = 1,5$ according to EN 1992-1-1:2004+AC:2010.

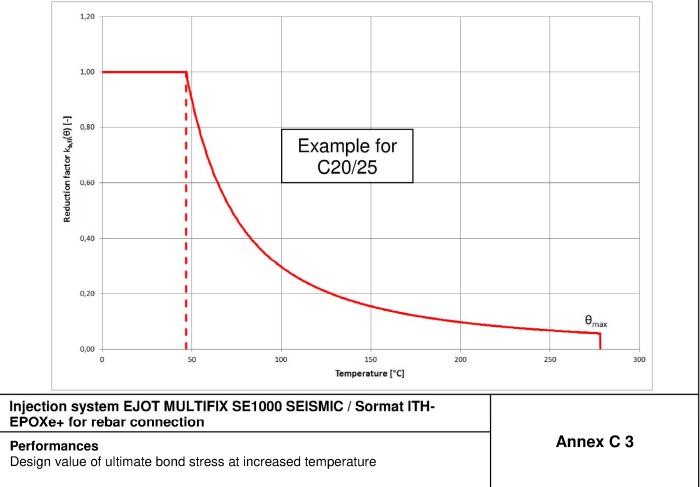
 $k_{b,seis}, k_{b,seis,100y}$: Reduction factor according to Table C6

Rebar				Concrete strength classes					
ф	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
10 to 32 mm	No performance assessed	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3
34 mm	1,6	2,0	2,3	2,6	2,9	3,3	3,6	3,9	4,2
36 mm	1,5	1,9	2,2	2,6	2,9	3,3	3,6	3,8	4,1
40 mm	1,5	1,8	2,1	2,5	2,8	3,1	3,4	3,7	4,0

Injection system EJOT MULTIFIX SE1000 SEISMIC / Sormat ITH-EPOXe+ for rebar connection

Performances

Minimum anchorage length and minimum lap length, Amplification factor, Reduction factor and Design values of ultimate bond stress under seismic action


Annex C 2

8.06.01-124/22

Design value of the ultimate bond stress $f_{bd,fi}$, $f_{bd,fi,100y}$ at increased temperature for concrete strength classes C12/15 to C50/60, (all drilling methods); working life 50 and 100 years: The design value of the bond stress f_{hd fi} at increased temperature has to be calculated by the following equation: For working life 50 years: $f_{bd,fi} = k_{fi}(\theta) \cdot f_{bd,PIR} \cdot \gamma_c / \gamma_{M,fi}$ $k_{fi}(\theta) = 4673.8 \cdot \theta^{-1.598} / (f_{bd PIB} \cdot 4.3) \le 1.0$ θ ≤ 278°C: with: $k_{fi}(\theta) = 0$ $\theta > 278^{\circ}C$: For working life 100 years: θ ≤ 278°C: with: $\theta > 278^{\circ}C$: $k_{fi,100v}(\theta) = 0$ Design value of the ultimate bond stress at increased temperature in N/mm² ^fbd,fi, fbd,fi,100y Temperature in °C in the mortar layer. A $k_{fi}(\theta), k_{fi,100v}(\theta)$ Reduction factor at increased temperature. Design value of the bond stress $f_{bd,PIR} = f_{bd,PIR,100v}$ in N/mm² in cold condition according to f_{bd.PIR}, f_{bd.PIR.100y} Table C4 considering the concrete strength classes, the rebar diameter, the drilling method and the bond conditions according to EN 1992-1-1:2004+AC:2010. = 1,5, recommended partial factor according to EN 1992-1-1:2004+AC:2010 γ_{c} = 1,0, recommended partial factor according to EN 1992-1-2:2004+AC:2008 γ_{M.fi} For evidence at increased temperature the anchorage length shall be calculated according to EN 1992-1-1:2004+AC:2010 Equation 8.3 using the temperature-dependent design value of ultimate bond stress ^fbd.fi^{, f}bd.fi.100v[.]

Example graph of Reduction factor $k_{fi}(\theta)$, $k_{fi,100y}(\theta)$ for concrete strength classes C20/25 for good bond conditions:

				M12	M16	M20	M24
Steel, zinc plated	l (ZA vz)		I				I
	R30	– N _{Rk,s,fi}	[kN] -	2,3	4,0	6,3	9,0
Characteristic	R60			1,7	3,0	4,7	6,8
tension resistance	R90			1,5	2,6	4,1	5,9
	R120			1,1	2,0	3,1	4,5
Stainless Steel (2	ZA A4 or Z	A HCR)					
	R30		[kN] -	3,4	6,0	9,4	13,6
Characteristic	R60	- N _{Rk,s,fi}		2,8	5,0	7,9	11,3
tension resistance	R90			2,3	4,0	6,3	9,0
	R120			1,8	3,2	5,0	7,2